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Penetration of Fields Through a Circular
Hole in a Wall of Finite Thickness

Robert L. Gluckstern and John A. Diamond

Abstract —We consider a uniform, static electric field on one side of a
plane metallic wall of finite thickness with a circular hole. The field
induces a charge distribution on the metallic surface which behaves, at
large distances from the hole, as a dipole moment, with different values
for the polarizability on the inside (same side as the driving field) and
outside surfaces of the hole. We have derived two integral equations for
the potential in the hole and constructed variational forms for the
“symmetric” and *“asymmetric” polarizabilities. Trial functions with
adjustable parameters lead to accurate numerical values for the *“inside”
and “outside” polarizabilities. A similar approach yields corresponding
values for the “inside” and “outside” magnetic susceptibilities.

I. InTRODUCTION

HE penetration of fields through a small, arbitrarily

shaped hole in the wall of a cavity is generally calculated
in the idealized case of a cavity with walls of zero thickness.
In an earlier paper [1] we constructed variational expressions
for the electric polarizability and magnetic susceptibility of
such a hole from integral equations for the potential and
ficld distribution within the hole. Exact expressions for the
fields’ penetration through circular and elliptical holes had
previously been derived by Bethe more than 40 years ago [2],
[3].

Interest in the case of finite wall thickness has also existed
for more than 20 years.! In the present work we confine our
attention to a circular hole in a plane wall of finite thickness
with a uniform electric or magnetic “far field” on one side.
By separating the problem into symmetric and asymmetric
problems with regard to the wall, we are able once again to
derive integral equations for the potential and field distribu-
tion within the hole and to construct variational expressions
for the “symmetric” and “asymmetric” polarizability and
susceptibility. A judicious choice of trial functions enables us
to obtain highly accurate numerical results for the polariz-
ability and susceptibility of the circular hole for a wall of
finite thickness.

II. ZeEro WALL THICKNESS

The electric field near a circular hole in a conducting wall
can be separated into two fields, one corresponding to a
symmetric (with respect to z — — z) configuration of the
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A bibliography for apertures in a thick screen was given in 1978 by
Butler et al. [4). See also [5] for an infinitely thick wall and [6] and [7] for
more recent work with narrow slot apertures with depth.

potential about the hole and one corresponding to an asym-
metric configuration (Fig. 1).

If the conducting wall has zero thickness, then the asym-
metric potential will have an electric field which is constant
in all space and the potential will be given by (we omit the
factor E, /2)

PD,=z.

The general solution for the symmetric potential is

(1)

‘Ps(x,y,z)=|zl+fw[ dkcdla (k,[)eR*+ily=olzl (2)

where

0'=\/m (3)

and a(k,!l) is to be determined. Denoting the potential in
the hole by

fs(x> _V) = Q)s(x, y70)
an inverse Fourier transform at z = 0 immediately yields

1

a(k, ) =g [ dedye P (y) ()

where the integrand vanishes outside the hole region. We
now use the continuity of & /dz in the hole to get

(4)

[ [ dkdica,(k,1)e*s+y =1, (6)
Substituting for a(k,[) and simplifying notation with
F=ki+lf F=xi+y (7)
we obtain
[ f(PYR (7,7 =1 (3)
where
o 1 o 1
K(7,7)=—3 | dGoe” ") = — .
(7 7) 477'2—[ aoe 27| — r’l3 ©)
The solution to (8) is
2
f(F)y=—Va*-r? (10)
o

where a is the radius of the hole [2], [3].

Similarly, for the magnetic problem with an asymptotic
field H, = H, as z >», we obtain for the symmetric H.
component (omitting the factor H,, /2)

[d7 e (FIK(F.F) = x (11)
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Fig. 1. Separation of electric field into a symmetric and an asymmetric
) component (zero wall thickness).
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Here g(7)= H_(x,y,0) vanishes outside the hole region.
The solution for the magnetic potential in the hole is [2], [3]

(13)

X
gs( )—;ﬁ—‘z—.

As before, the asymmetric H, component corresponds to a
uniform H, in all of space.

From the potentials in the hole, the polarizability and
susceptibility can be determined. An asymptotically uniform
electric field E; on one side of a thin wall with a circular
hole induces a dipole moment in the wall given by

4
x = [dFI(7) = 5 (14)
where y is the electric polarizability of the hole. Similarly,

for an asymptotically uniform magnetic field H0 on one side
of the thin wall, the induced magnetic moment is

= / drxg (F) =8a%/3 .

D= xeE,,

771:1;’1'70

¥,,=8a/3 (15)

where ¢, and ¢, are the dlagonahzed magnetic suscepti-
bilities of the hole.

III. VARIATIONAL FORMULATION FOR FINITE
WaLL THICKNESS

When we have an electric or magnetic field in the vicinity
of a small circular hole of radius & in a conducting wall with
finite thickness L, we begin, as in the zero thickness case,
with a separation of the problem into symmetric and asym-
metric parts. The electric case is shown in Fig. 2.

A. Electric

In the case of the symmetric potential depicted in Fig. 2,
the potential in the region |z| > L /2 can be written as

O(F,z) =lzl- L/2+ [dda ()e™ " o0=I7L/D, (16)

The first term in (16) corresponds to the asymptotic field
E,=41 as |z| =, while the second term, which corre-
sponds to the potential from the induced charges on the
metal surface, satisfies Laplace’s equation and vanishes as
[z] =00,

JLE- =" [+ |
e
Vil T 11
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Fig. 2. An electric field incident on a circular hole of radius @ in a wall
of finite thickness L is split into two components: one with an asymmet-
ric potential and one with a symmetric potential about the midpoint of
the wall.

Defining the potential at z = L /2 to be f(¥), an inverse
Fourier transform leads to

a(F) =

f eI (7). (17)

In the region — L /2<z< L/2, we expand @, in terms
of a set of normalized functions ¢,(x,y) which satisfy the
boundary condition that E is purely radial at » =a. The
function ¢,(7) is just the normalized Jy(p,r /a), where p, is
the nth zero of Jy(p). Expanding in that region gives us

d(7,z) =) b,b,(F)cosh(y,z), lzl< L/2 (18)

where
=p,/a. (19)

We choose cosh(y, z) since we have a symmetric potential.
Matching the potential at z = L /2 gives us

(7, L/2) = f(7) = Lb,¢,(F)cosh(y,L /2) (20)
n
from which we obtain the coefficients b,:

— 1 o ord ford
= Wfdrfs(r)d)n(r)

(21)

where the integrand vanishes outside the hole region. From
the continuity of d®; /dz at z = L /2, we obtain the relation

Y ¥ubuu(F)sinh (v,L /2) =1— [ dFoa(&)e". (22)

Using (17) and (21), we obtain the integral equation

JdP £ (FOR(F ) =1 (23)
with the kernel KA'S given by
5o 1 > G (-7
K (7, 7) = 4—72/(10'0'6 (r=r’

+ 2 Yatanh (v,L /2)$,(7) b, (7). (24)

n=1

For the asymmetric case, cosh(y, z) in (18) is replaced by
sinh(y,z), resulting in an asymmetric kernel which differs
from the symmetric kernel by having coth(y, L /2) instead of
tanh(y, L /2)-in (24). In this case the potential in the hole at
z =L /2 is denoted by f,().
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If we define

X, = [ drf(7) (25)

we can write the following variational form for x:

[ar[ P (P) £ K(F )
xit= 5 . (26)
|[ar.5)]
We use as a trial function the series
7’2 m

P = S, 1= ) (2)

where c¢,, are coefficients which will be chosen to minimize
x. !in (26). For a thin wall, the behavior of the potential will
be similar to that for L =0 given by (10). In this case we
therefore let m take on the values

135 %)
M=

making f{7) in (27) correspond to the zero thickness result
multiplied by a Taylor series in powers of 1—r2 /a2,

For a thick wall, the potential at a 90° corner varies as
R?/3, where R is the distance from the vertex. In this case
the leading term with the appropriate behavior at the ver-

tices is
R
1 i
and we therefore let m take on the values

2 5 8
m*§3§s§9

2/3

(29)

for which f,(¥) has the correct singular behavior at 7%= a2,
In fact, we use both sets of values for m in our numerical
work and find reasonable agreement between the two re-
sults. But the sequence in (29) leads to the most rapid
convergence for all L /a # 0 since it corresponds to'the trial
function with the correct behavior near 2 = a”.

The variational equation, after algebraic manipulation,
becomes

3 Z chcm(KS)lm

—-1_ _1
2 2
(Ze)
1
where (K,),,, is given by

sy TU+2T(m+2)T(I+m)T(3/2)
(K)um = T(+1/2)T(m+1/2)T(1+m+3/2)

(30)

+ T +2)T(m+2)
. i J1+1(pn)']m+1(pn)tanh(an/za)
T p)(p,/2)' """ '

n=1

(31)

In evaluating [dr[d7'f(7)f(P)K (F.7"), we have used
a1 "t “ar(1- Y
fi il e w‘[()rr 3 olor)

) m+1

= mzm!(;‘—a-) I, i(oa) (32)

where the last form is obtained by expanding J(or) in
powers of (or) [1]. We have also used [8]

® J(oa)l,(oa)

/od ot

o (=)

Ad+v—u+1 Adv+u+1 Ad+u—v+1y\°
e e i

(33)

From (30) and the variational principle, we want to minimize
e K, subject to the constraint that XL,c; =
constant. Using A as a Lagrange multiplier, the minimization
of the function

0= ; chcm(lés)lm*ZA;CZ (34)

occurs when

a=r2 (K1), (35)
m

where K;! is the inverse of the matrix K,. Equation (30)

then relates y, to the sum of all the elements of K, ! by

2 A
—x= 2 LK) - (36)
The analysis for the asymmetric potential is nearly iden-
tical, the only difference being the replacement of
tanh(p, L /2a) in (31) by coth(p,L /2a). The variational
result for y, is therefore given by
2 Ay
—3Xa = E Z(Ka )lm' (37)
Ta T
One can now express the results in terms of an induced
electric dipole moment. The polarizability related to the
induced dipole moment seen inside the cavity (on the side
where there is a driving field) is
Xin':fd?[fs(?)_'—fa(?)]=Xs+Xa (38)
while the polarizability related to the induced dipole mo-
ment seen outside the cavity is

Xouw= [ AL f(F) = FuD)] =xe =X (39)

B. Magnetic

As in the electric case, a magnetic field incident on a
conducting surface with a circular hole can be divided into a
symmetric and an asymmetric mode, as shown in Fig. 3. In
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Fig. 3. Separation of magnetic field into symmetric and asymmetric
components.

the region z > L /2, a scalar potential which satisfies the
magnetic boundary conditions is given by

zzL/2.
(40)

V(x,3,2)=x+ [dGb(F)e!” oL,

Differentiating gives us the magnetic field:

9P o
H,=—— == [dab(a)aei oL,

(41)
Defining

H.(x,y,L/2)=g(F) (42)
allows us to express b(&) via an inverse Fourier transform as

1

ob(7) == [ dig(F)e T, (43)

For the symmetric H, case, we can write the potential in the
region — L /2<z<L/2as

V. =Y a,sinh(y,2)d,(7), lzl< L /2 (44)

where the normalized functions ,(7) satisfy the magnetic
boundary condition

i,
ar

=0. (45)

r=a
Here, ¢,(7) is just the normalized J(q,r/a)cos®, where
g, = 7y,a is the nth zero of J{(q).

We can express the coefficients a, in (44) in terms of
g,(7) by recognizing the fact that the ¢,(7) form a complete
set in the interval 0 < r < a. This yields

1
4= L) | TEORE). (40)

Then, using the continuity of ¥, at z = L /2, we equate (44)
and (40) using (43) and (46) to obtain

[dr g (FYK(7,7)=x (47)
where
E (77 1 do i (F—7")
s(r,r)— G2 76
tanh(y,L /2) N
+2 y—wn(r)%(r ). (48)

n n

Defining
U, = [ drxg,(7)

allows us to express the magnetic susceptibility in the varia-
tional form

1 [ a7 [dr g (F) e (F)K(F,F)
by =

(49)

3 (50)
( / d?xgs(?))
We use as our trial function
5, m—1
P2
gs(?)=rcos02m(m+1)cm(1-—2) (51)
a
m

where the factor rcosf is required by the presence of
x =rcos@ on the right side of (47). As in the electric case,
the limiting forms suggest rapid convergence of the series by
using (28) for a thin wall and (29) for a thick wall.

Using relations similar to those in the electric case, we
finally obtain

(R), — IF(+2)T'(m+2)T'(I+m)T(3/2)
SHm = AT(1+1/2)T(m+1/2)T (I +m +3/2)
+T(1+2)T(m+2)

d Jl+1(qn)‘,m+1(qn) tanh(an/za)

‘ — (52)
n=1 le(qn)(qn - l/qn)(qn /2)1+
where the variational form relates ¢, to the kernel by
2 -
—i, = K7, . 53
'77'613 l/IS ; %z: ( s )lm ( )

For the asymmetric case, sinh(y, z) is replaced by cosh(y,z)
in (44), resulting in tanh(g,L /2a) being replaced by
coth(g, L /2a) in (52). Defining

%zﬁa =L (K (54)
the susceptibility seen within the cavity is given by
bin=¥;+ ¥, (55)
while the susceptibility seen outside the cavity is given by
You = ¥s — ¥, (56)

by analogy with (38) and (39).

IV. NuMERICAL RESULTS

By using the variational method, we were able to obtain
values for the polarizability and susceptibility accurate to five
decimal places.? Table I lists 3y /8a> and 3y /84> for vari-
ous thickness-to-radius (L /a) ratios. The polarizabilities
and susceptibilities seen both inside and outside the cavity
are given. In Fig. 4 we show 3y;, /84> and 3¢, /84> as
functions of L /a. Fig. 5 shows the dependence of
In(3x,, /84%) and In(3¢,,, /8a>) on L /a, and is in excel-
lent agreement with results quoted by McDonald [3].

®We found that the series for 3y /8a and 3¢ /8a starting with
m=2/3 converged to five decimal palaces for L /a > 0.001 and there-
fore used only this sequence for the results in Table I. We cut off the
sums over # in (31) and (32) when p,L /24 =10 and ¢q,L /2a =10 and
obtained optimum convergence with eight terms in the series for / or m.
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TABLE 1
3 3 3
g?()(s—l_/\/a) ggg(l//ﬁ‘%) @(Xx_)(a) ﬁ(%_%)
0 0.50000 1.00000 0.50000 1.00000
0.001 0.49849 0.99640 0.49732 0.99522
0.003 0.49629 0.99084 0.49279 0.98732
0.01 0.49053 0.97537 0.47904 0.96373
0.03 0.47951 0.94284 0.44636 0.90863
0.1 0.45883 0.87143 0.36017 0.76404
0.3 0.43826 0.77829 0.21014 0.50124
1.0 0.42950 0.71467 0.03740 0.13340
3.0 0.42923 0.70987 0.00030 0.00335
10.0 0.42923 0.70987 0.00000 0.00000
o 0.42923 0.70987 0.00000 0.00000
0.50 —_— — 0.0 , . . , .
0.48 - _ )
0.46 3% - i
833
0441~ _
042 s | 1 I L 1 L i
0.0 4
02 04 i 0.6 0.8 1.0
1.00
0.95 .
090
30 1 1 L | L I L | L
0851 0.0 0.2 0.4 0.6 0.8 1.0
L/a
0.80 Fig. 5. *‘QOutside™ polarizability and susceptibility as a function of wall
thickness. The dashed lines are the asymptotic limits for thick walls.
0.75
modes with the smallest exponential drop-off along the z
070 . | , ! , ! , | axis, for thick walls. The numerical constant in (59) agrees
vo 0.2 04 L/a 06 08 10 exactly with that of Latham and Lee [5] for magnetic pene-
o . o ) tration into a semi-infinite pipe.
Fig. 4. “Inside polarlzab111tyt;111r(1:iniussscept1b1hty as a function of wall For small L/a, one can use the stationary forms in (26)

As L /a— 0, we recover the zero thickness results:
XOUE = Xin - 4a3/3 lﬁ()u.t = Lpl]’l - 8a3/3' (57)

As L /a—w, the logarithmic graphs become linear with
slopes —2.405 and —1.841, respectively, for the polarizabil-
ity and susceptibility. These asymptotic limits are shown as
dashed lines in Fig. 5 and are given by

In (3xgu /8a) > —2.405(L /a) —0.886 (58)

In (3¢ /8a%) = —1.841(L /a) —0.716. (59)

The fact that the slopes equal the first zeros of Jy(p) and
J{(g) reflects the dominance of the lowest modes, i.e., the

and (50) to show that

3x, 1 3L a

e (lnz+A) (60)
34, 3L

= ~5—(an—|—/1’) (61)
3x, 3¢, 3wL

a7 =827 Toa (62)

where the numerical values® 4 =1.88+0.02 and 4'=1.88+
0.02 are obtained by using the values in Table I for L /a <
0.03. The infinite slope at L /a =0 indicated by (60) and

*The numerical results indicate that 4 = A'. We cannot prove this
assertion.
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(61) accounts for the curvature seen in Figs. 4 and 5 near
L/a=0

V. SumMMARY

We have derived irtegral equations for the potential and
field distribution within a circular hole in a plane conducting
wall of finite thickness induced by umiform “far fields.”
Variational expressions are then obtained for the polarizabil-
ity and susceptibility of the hole, from which one can obtain
the electric and magnetic dipole moments induced on the
inside (far field) and outside (no far field) boundaries of the
hole. A choice of trial functions with adjustable parameters
which takes into account the expected potential and field
behavior near the hole corners and edges leads to numerlcal
values accurate to approximately 10 p.p.m.
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